Rigidity of the three-dimensional hierarchical Coulomb gas
成果类型:
Article
署名作者:
Chatterjee, Sourav
署名单位:
Stanford University
刊物名称:
PROBABILITY THEORY AND RELATED FIELDS
ISSN/ISSBN:
0178-8051
DOI:
10.1007/s00440-019-00912-6
发表日期:
2019
页码:
1123-1176
关键词:
exact statistical mechanics
renormalization-group flow
kosterlitz-thouless phase
charge fluctuations
markov semigroups
large deviations
RANDOM MATRICES
UNIVERSALITY
eigenvalues
zeros
摘要:
A random set of points in Euclidean space is called 'rigid' or 'hyperuniform' if the number of points falling inside any given region has significantly smaller fluctuations than the corresponding number for a set of i.i.d. random points. This phenomenon has received considerable attention in recent years, due to its appearance in random matrix theory, the theory of Coulomb gases and zeros of random analytic functions. However, most of the published results are in dimensions one and two. This paper gives the first proof of hyperuniformity in a Coulomb type system in dimension three, known as the hierarchical Coulomb gas. This is a simplified version of the actual 3D Coulomb gas. The interaction potential in this model, inspired by Dyson's hierarchical model of the Ising ferromagnet, has a hierarchical structure and is locally an approximation of the Coulomb potential. Hyperuniformity is proved at both macroscopic and microscopic scales, with upper and lower bounds for the order of fluctuations that match up to logarithmic factors. The fluctuations have cube-root behavior, in agreement with a well-known prediction for the 3D Coulomb gas. For completeness, analogous results are also proved for the 2D hierarchical Coulomb gas and the 1D hierarchical log gas.