Super-Ricci flows and improved gradient and transport estimates

成果类型:
Article
署名作者:
Kopfer, Eva
署名单位:
University of Bonn
刊物名称:
PROBABILITY THEORY AND RELATED FIELDS
ISSN/ISSBN:
0178-8051
DOI:
10.1007/s00440-019-00904-6
发表日期:
2019
页码:
897-936
关键词:
metric-measure-spaces curvature-dimension condition EQUIVALENCE entropy
摘要:
We introduce Brownian motions on time-dependent metric measure spaces, proving their existence and uniqueness. We prove contraction estimates for their trajectories assuming that the time-dependent heat flow satisfies transport estimates with respect to every L-p-Kantorovich distance, p. [1,8]. These transport estimates turn out to characterize super-Ricci flows, introduced by Sturm (J Funct Anal 275(12):3504-3569, 2015.)