On delocalization of eigenvectors of random non-Hermitian matrices
成果类型:
Article
署名作者:
Lytova, Anna; Tikhomirov, Konstantin
署名单位:
University of Opole; University System of Georgia; Georgia Institute of Technology
刊物名称:
PROBABILITY THEORY AND RELATED FIELDS
ISSN/ISSBN:
0178-8051
DOI:
10.1007/s00440-019-00956-8
发表日期:
2020
页码:
465-524
关键词:
smallest singular-value
braesss paradox
UNIVERSALITY
probabilities
statistics
INEQUALITY
摘要:
We study delocalization of null vectors and eigenvectors of random matrices with i.i.d entries. Let A be an nxn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\times n$$\end{document}|I|=m||vI||>= m3/2n3/2logCn||v||\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \min \limits _{I\subset [n],\,|I|= m}\Vert \mathbf{{v}}_I\Vert \ge \frac{m<^>{3/2}}{n<^>{3/2}\log <^>Cn}\Vert \mathbf{{v}}\Vert \end{aligned}$$\end{document}for any real eigenvector v\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{{v}}$$\end{document} and any m is an element of[logCn,n]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m\in [\log <^>C n,n]$$\end{document}, where vI\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{{v}}_I$$\end{document} denotes the restriction of v\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{{v}}$$\end{document} to I. Further, when the entries of A are complex, with i.i.d real and imaginary parts, we show that with probability at least 1-e-log2n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1-e<^>{-\log <^>{2} n}$$\end{document}all eigenvectors of A are delocalized in the sense that minI subset of[n],|I|=m||vI||>= mnlogCn||v||\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \min \limits _{I\subset [n],\,|I|= m}\Vert \mathbf{{v}}_I\Vert \ge \frac{m}{n\log <^>Cn}\Vert \mathbf{{v}}\Vert \end{aligned}$$\end{document}for all m is an element of[logCn,n]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m\in [\log <^>C{n},n]$$\end{document}. Comparing with related results, in the range m is an element of[logC ' n,n/logC ' n]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m\in [\log <^>{C'}{n},n/\log <^>{C'}{n}]$$\end{document} in the i.i.d setting and with weaker probability estimates, our lower bounds on ||vI||\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Vert \mathbf{{v}}_I\Vert $$\end{document} strengthen an earlier estimate min|I|=m||vI||>= c(m/n)6||v||\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\min \nolimits _{|I|= m}\Vert \mathbf{{v}}_I\Vert \ge c(m/n)<^>6\Vert \mathbf{{v}}\Vert $$\end{document} obtained in Rudelson and Vershynin (Geom Funct Anal 26(6):1716-1776, 2016), and bounds min|I|=m||vI||>= c(m/n)2||v||\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\min \nolimits _{|I|= m}\Vert \mathbf{{v}}_I\Vert \ge c(m/n)<^>2\Vert \mathbf{{v}}\Vert $$\end{document} (in the real setting) and min|I|=m||vI||>= c(m/n)3/2||v||\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\min \nolimits _{|I|= m}\Vert \mathbf{{v}}_I\Vert \ge c(m/n)<^>{3/2}\Vert \mathbf{{v}}\Vert $$\end{document} (in the complex setting) established in Luh and O'Rourke (Eigenvector delocalization for non-Hermitian random matrices and applications. ). As the case of real and complex Gaussian matrices shows, our bounds are optimal up to the polylogarithmic multiples. We derive stronger estimates without the polylogarithmic error multiples for null vectors of real (n-1)xn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(n-1)\times n$$\end{document} random matrices.