Noise sensitivity of the top eigenvector of a Wigner matrix
成果类型:
Article
署名作者:
Bordenave, Charles; Lugosi, Gabor; Zhivotovskiy, Nikita
署名单位:
Centre National de la Recherche Scientifique (CNRS); Aix-Marseille Universite; Aix-Marseille Universite; Pompeu Fabra University; ICREA; Alphabet Inc.; Google Incorporated
刊物名称:
PROBABILITY THEORY AND RELATED FIELDS
ISSN/ISSBN:
0178-8051
DOI:
10.1007/s00440-020-00970-1
发表日期:
2020
页码:
1103-1135
关键词:
universality
摘要:
We investigate the noise sensitivity of the top eigenvector of a Wigner matrix in the following sense. Let v be the top eigenvector of an NxN Wigner matrix. Suppose that k randomly chosen entries of the matrix are resampled, resulting in another realization of the Wigner matrix with top eigenvector v[k]. We prove that, with high probability, when kMUCH LESS-THANN5/3-o(1), then v and v[k] are almost collinear and when k >> N5/3, then v[k] is almost orthogonal to v.
来源URL: