Mean-field avalanche size exponent for sandpiles on Galton-Watson trees
成果类型:
Article
署名作者:
Jarai, Antal A.; Ruszel, Wioletta M.; Saada, Ellen
署名单位:
University of Bath; Delft University of Technology; Utrecht University; Universite Paris Cite; IMT - Institut Mines-Telecom; Institut Polytechnique de Paris; Telecom SudParis; Centre National de la Recherche Scientifique (CNRS); CNRS - National Institute for Mathematical Sciences (INSMI)
刊物名称:
PROBABILITY THEORY AND RELATED FIELDS
ISSN/ISSBN:
0178-8051
DOI:
10.1007/s00440-019-00951-z
发表日期:
2020
页码:
369-396
关键词:
infinite volume limit
MODEL
摘要:
We show that in Abelian sandpiles on infinite Galton-Watson trees, the probability that the total avalanche has more than t topplings decays as t(-1/2). We prove both quenched and annealed bounds, under suitable moment conditions. Our proofs are based on an analysis of the conductance martingale of Morris (Probab Theory Relat Fields 125:259-265, 2003), thatwas previously used by Lyons et al. (Electron J Probab 13(58):1702-1725, 2008) to study uniform spanning forests on Z(d), d >= 3, and other transient graphs.
来源URL: