The diameter of uniform spanning trees in high dimensions
成果类型:
Article
署名作者:
Michaeli, Peleg; Nachmias, Asaf; Shalev, Matan
署名单位:
Tel Aviv University
刊物名称:
PROBABILITY THEORY AND RELATED FIELDS
ISSN/ISSBN:
0178-8051
DOI:
10.1007/s00440-020-00999-2
发表日期:
2021
页码:
261-294
关键词:
random-walk
interlacements
摘要:
We show that the diameter of a uniformly drawn spanning tree of a connected graph on n vertices which satisfies certain high-dimensionality conditions typically grows like Theta(root n). In particular this result applies to expanders, finite tori Z(m)(d) of dimension d >= 5, the hypercube {0, 1}(m), and small perturbations thereof.