Explicit formulas for the inverses of Toeplitz matrices, with applications
成果类型:
Article
署名作者:
Inoue, Akihiko
署名单位:
Hiroshima University
刊物名称:
PROBABILITY THEORY AND RELATED FIELDS
ISSN/ISSBN:
0178-8051
DOI:
10.1007/s00440-022-01162-9
发表日期:
2023
页码:
513-552
关键词:
finite predictor coefficients
REPRESENTATION
INEQUALITY
摘要:
We derive novel explicit formulas for the inverses of truncated block Toeplitz matrices that correspond to a multivariate minimal stationary process. The main ingredients of the formulas are the Fourier coefficients of the phase function attached to the spectral density of the process. The derivation of the formulas is based on a recently developed finite prediction theory applied to the dual process of the stationary process. We illustrate the usefulness of the formulas by two applications. The first one is a strong convergence result for solutions of general block Toeplitz systems for a multivariate short-memory process. The second application is closed-form formulas for the inverses of truncated block Toeplitz matrices corresponding to a multivariate ARMA process. The significance of the latter is that they provide us with a linear-time algorithm to compute the solutions of corresponding block Toeplitz systems.