Stationary measures for stochastic differential equations with degenerate damping
成果类型:
Article
署名作者:
Bedrossian, Jacob; Liss, Kyle
署名单位:
University of California System; University of California Los Angeles; Duke University
刊物名称:
PROBABILITY THEORY AND RELATED FIELDS
ISSN/ISSBN:
0178-8051
DOI:
10.1007/s00440-024-01265-5
发表日期:
2024
页码:
101-178
关键词:
shell-model
lyapunov
CONVERGENCE
摘要:
A variety of physical phenomena involve the nonlinear transfer of energy from weakly damped modes subjected to external forcing to other modes which are more heavily damped. In this work we explore this in (finite-dimensional) stochastic differential equations in Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}<^>n$$\end{document} with a quadratic, conservative nonlinearity B(x, x) and a linear damping term-Ax which is degenerate in the sense that kerA not equal null \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{ker} A \ne \emptyset $$\end{document}. We investigate sufficient conditions to deduce the existence of a stationary measure for the associated Markov semigroups. Existence of such measures is straightforward if A is full rank, but otherwise, energy could potentially accumulate in kerA\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{ker} A$$\end{document} and lead to almost-surely unbounded trajectories, making the existence of stationary measures impossible. We give a relatively simple and general sufficient condition based on time-averaged coercivity estimates along trajectories in neighborhoods of kerA\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{ker} A$$\end{document} and many examples where such estimates can be made.