Optimal transport methods for combinatorial optimization over two random point sets

成果类型:
Article
署名作者:
Goldman, Michael; Trevisan, Dario
署名单位:
Centre National de la Recherche Scientifique (CNRS); Institut Polytechnique de Paris; Ecole Polytechnique; University of Pisa
刊物名称:
PROBABILITY THEORY AND RELATED FIELDS
ISSN/ISSBN:
0178-8051
DOI:
10.1007/s00440-023-01245-1
发表日期:
2024
页码:
1315-1384
关键词:
摘要:
We investigate the minimum cost of a wide class of combinatorial optimization problems over random bipartite geometric graphs in Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}<^>d$$\end{document} where the edge cost between two points is given by a pth power of their Euclidean distance. This includes e.g. the travelling salesperson problem and the bounded degree minimum spanning tree. We establish in particular almost sure convergence, as n grows, of a suitable renormalization of the random minimum cost, if the points are uniformly distributed and d >= 3,1 <= p