On questions of uniqueness for the vacant set of Wiener sausages and Brownian interlacements
成果类型:
Article
署名作者:
Mu, Yingxin; Sapozhnikov, Artem
署名单位:
Leipzig University
刊物名称:
PROBABILITY THEORY AND RELATED FIELDS
ISSN/ISSBN:
0178-8051
DOI:
10.1007/s00440-024-01315-y
发表日期:
2024
页码:
703-751
关键词:
percolation
times
摘要:
We consider connectivity properties of the vacant set of (random) ensembles of Wiener sausages in Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}<^>d$$\end{document} in the transient dimensions d >= 3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d \ge 3$$\end{document}. We prove that the vacant set of Brownian interlacements contains at most one infinite connected component almost surely. For finite ensembles of Wiener sausages, we provide sharp polynomial bounds on the probability that their vacant set contains at least 2 connected components in microscopic balls. The main proof ingredient is a sharp polynomial bound on the probability that several Brownian motions visit jointly all hemiballs of the unit ball while avoiding a slightly smaller ball.