Three-point correlation functions in the sl3 Toda theory I: reflection coefficients
成果类型:
Article
署名作者:
Cercle, Baptiste
署名单位:
Universite Paris Saclay
刊物名称:
PROBABILITY THEORY AND RELATED FIELDS
ISSN/ISSBN:
0178-8051
DOI:
10.1007/s00440-023-01219-3
发表日期:
2024
页码:
89-158
关键词:
GAUSSIAN MULTIPLICATIVE CHAOS
liouville quantum-gravity
brownian-motion
path decompositions
whittaker functions
continuity
amplitudes
map
摘要:
Toda conformal field theories (CFTs) form a family of 2d CFTs indexed by semisimple and complex Lie algebras. They are natural generalizations of the Liouville CFT in that they enjoy an enhanced level of symmetry encoded by W-algebras. These theories can be rigorously defined using a probabilistic framework that involves the consideration of correlated Gaussian Multiplicative Chaos measures. This document provides a first step towards the computation of a class of three-point correlation functions, that generalize the celebrated DOZZ formula and whose expressions were predicted in the physics literature by Fateev-Litvinov, within the probabilistic framework associated to the sl(3) Toda CFT. Namely this first article of a two-parts series is dedicated to the probabilistic derivation of the reflection coefficients of general Toda CFTs, which are essential building blocks in the understanding of Toda correlation functions. Along the computations of these reflection coefficients a new path decomposition for diffusion processes in Euclidean spaces, based on a suitable notion of minimum and that generalizes the celebrated one-dimensional result of Williams, will be unveiled. As a byproduct we describe the joint tail expansion of correlated Gaussian Multiplicative Chaos measures together with an asymptotic expansion of class one Whitakker functions.
来源URL: