Quantitative limit theorems and bootstrap approximations for empirical spectral projectors

成果类型:
Article
署名作者:
Jirak, Moritz; Wahl, Martin
署名单位:
University of Vienna; University of Bielefeld
刊物名称:
PROBABILITY THEORY AND RELATED FIELDS
ISSN/ISSBN:
0178-8051
DOI:
10.1007/s00440-024-01290-4
发表日期:
2024
页码:
119-177
关键词:
Principal component analysis efficient estimation perturbation bounds spiked eigenvalues sparse pca covariance functionals statistics matrices rates
摘要:
Given finite i.i.d. samples in a Hilbert space with zero mean and trace-class covariance operator Sigma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Sigma $$\end{document}, the problem of recovering the spectral projectors of Sigma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Sigma $$\end{document} naturally arises in many applications. In this paper, we consider the problem of finding distributional approximations of the spectral projectors of the empirical covariance operator Sigma<^>\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hat{\Sigma }}$$\end{document}, and offer a dimension-free framework where the complexity is characterized by the so-called relative rank of Sigma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Sigma $$\end{document}. In this setting, novel quantitative limit theorems and bootstrap approximations are presented subject to mild conditions in terms of moments and spectral decay. In many cases, these even improve upon existing results in a Gaussian setting.
来源URL: