Benign overfitting and adaptive nonparametric regression
成果类型:
Article
署名作者:
Chhor, Julien; Sigalla, Suzanne; Tsybakov, Alexandre B.
署名单位:
Universite de Toulouse; Universite Toulouse 1 Capitole; Toulouse School of Economics; Institut Polytechnique de Paris; Ecole Polytechnique; ENSAE Paris
刊物名称:
PROBABILITY THEORY AND RELATED FIELDS
ISSN/ISSBN:
0178-8051
DOI:
10.1007/s00440-024-01278-0
发表日期:
2024
页码:
949-980
关键词:
fractional brownian-motion
rough path
differential-equations
signature
driven
摘要:
We study benign overfitting in the setting of nonparametric regression under mean squared risk, and on the scale of H & ouml;lder classes. We construct a local polynomial estimator of the regression function that is minimax optimal on a H & ouml;lder class with any given smoothness, and that is a continuous function interpolating the set of observations with high probability. The key element of the construction is the use of singular kernels. Moreover, we prove that adaptation to unknown smoothness is compatible with benign overfitting. Namely, we construct a continuous and interpolating local polynomial estimator attaining the minimax optimal rate in L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_2$$\end{document} adaptively to the unknown H & ouml;lder smoothness. Our results highlight the fact that interpolation can be fundamentally decoupled from bias-variance tradeoff in the problem of nonparametric regression.
来源URL: