Extremal invariant distributions of infinite Brownian particle systems with rank dependent drifts

成果类型:
Article
署名作者:
Banerjee, Sayan; Budhiraja, Amarjit
署名单位:
University of North Carolina; University of North Carolina Chapel Hill
刊物名称:
PROBABILITY THEORY AND RELATED FIELDS
ISSN/ISSBN:
0178-8051
DOI:
10.1007/s00440-024-01305-0
发表日期:
2024
页码:
79-117
关键词:
CONVERGENCE-RATES DIFFUSIONS MOTIONS models
摘要:
Consider an infinite collection of particles on the real line moving according to independent Brownian motions and such that the i-th particle from the left gets the drift gi-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g_{i-1}$$\end{document}. The case where g0=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g_0=1$$\end{document} and gi=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g_{i}=0$$\end{document} for all i is an element of N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i \in {\mathbb {N}}$$\end{document} corresponds to the well studied infinite Atlas model. Under conditions on the drift vector g=(g0,g1,& mldr;)'\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{g}}= (g_0, g_1, \ldots )'$$\end{document} it is known that the Markov process corresponding to the gap sequence of the associated ranked particles has a continuum of product form stationary distributions {pi ag,a is an element of Sg}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{\pi _a<^>{{\varvec{g}}}, a \in S<^>{{\varvec{g}}}\}$$\end{document} where Sg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S<^>{{\varvec{g}}}$$\end{document} is a semi-infinite interval of the real line. In this work we show that all of these stationary distributions are extremal and ergodic. We also prove that any product form stationary distribution of this Markov process that satisfies a mild integrability condition must be pi ag\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi _a<^>{{\varvec{g}}}$$\end{document} for some a is an element of Sg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a \in S<^>{{\varvec{g}}}$$\end{document}. These results are new even for the infinite Atlas model. The work makes progress on the open problem of characterizing all the invariant distributions of general competing Brownian particle systems interacting through their relative ranks. Proofs rely on synchronous and mirror coupling of Brownian particles and properties of the intersection local times of the various particles in the infinite system.
来源URL: