Global well-posedness of the 2D nonlinear Schrödinger equation with multiplicative spatial white noise on the full space
成果类型:
Article
署名作者:
Debussche, Arnaud; Liu, Ruoyuan; Tzvetkov, Nikolay; Visciglia, Nicola
署名单位:
Centre National de la Recherche Scientifique (CNRS); CNRS - National Institute for Mathematical Sciences (INSMI); Universite de Rennes; University of Edinburgh; University of Edinburgh; Heriot Watt University; Ecole Normale Superieure de Lyon (ENS de LYON); University of Pisa
刊物名称:
PROBABILITY THEORY AND RELATED FIELDS
ISSN/ISSBN:
0178-8051
DOI:
10.1007/s00440-024-01288-y
发表日期:
2024
页码:
1161-1218
关键词:
schrodinger-equation
cauchy-problem
besov
摘要:
We consider the nonlinear Schr & ouml;dinger equation with multiplicative spatial white noise and an arbitrary polynomial nonlinearity on the two-dimensional full space domain. We prove global well-posedness by using a gauge-transform introduced by Hairer and Labb & eacute; (Electron Commun Probab 20(43):11, 2015) and constructing the solution as a limit of solutions to a family of approximating equations. This paper extends a previous result by Debussche and Martin (Nonlinearity 32(4):1147-1174, 2019) with a sub-quadratic nonlinearity.
来源URL: