Nonparametric Bayesian estimation in a multidimensional diffusion model with high frequency data
成果类型:
Article; Early Access
署名作者:
Hoffmann, Marc; Ray, Kolyan
署名单位:
Universite PSL; Universite Paris-Dauphine; Institut Universitaire de France; Imperial College London
刊物名称:
PROBABILITY THEORY AND RELATED FIELDS
ISSN/ISSBN:
0178-8051
DOI:
10.1007/s00440-024-01317-w
发表日期:
2024
关键词:
posterior contraction rates
Inverse problems
drift estimation
differential-equations
ergodic diffusions
convergence-rates
scalar diffusions
inference
inequalities
REGULARITY
摘要:
We consider nonparametric Bayesian inference in a multidimensional diffusion model with reflecting boundary conditions based on discrete high-frequency observations. We prove a general posterior contraction rate theorem in L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>2$$\end{document}-loss, which is applied to Gaussian priors. The resulting posteriors, as well as their posterior means, are shown to converge to the ground truth at the minimax optimal rate over H & ouml;lder smoothness classes in any dimension. Of independent interest and as part of our proofs, we show that certain frequentist penalized least squares estimators are also minimax optimal.
来源URL: