Branching random walks and Minkowski sum of random walks

成果类型:
Article
署名作者:
Asselah, Amine; Okada, Izumi; Schapira, Bruno; Sousi, Perla
署名单位:
Universite Gustave-Eiffel; Universite Paris-Est-Creteil-Val-de-Marne (UPEC); Centre National de la Recherche Scientifique (CNRS); CNRS - National Institute for Mathematical Sciences (INSMI); Chiba University; Aix-Marseille Universite; Centre National de la Recherche Scientifique (CNRS); CNRS - National Institute for Mathematical Sciences (INSMI); University of Cambridge
刊物名称:
PROBABILITY THEORY AND RELATED FIELDS
ISSN/ISSBN:
0178-8051
DOI:
10.1007/s00440-024-01352-7
发表日期:
2025
页码:
1289-1322
关键词:
capacity range THEOREMS
摘要:
We show that the range of a critical branching random walk conditioned to survive forever and the Minkowski sum of two independent simple random walk ranges are intersection-equivalent in any dimension d >= 5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\ge 5$$\end{document}, in the sense that they hit any finite set with comparable probability, as their common starting point is sufficiently far away from the set to be hit. Furthermore, we extend a discrete version of Kesten, Spitzer and Whitman's result on the law of large numbers for the volume of a Wiener sausage. Here, the sausage is made of the Minkowski sum of N independent simple random walk ranges in Zd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}<^>d$$\end{document}, with d >= 2N+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\ge 2N+1$$\end{document}, and of a finite set A subset of Zd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A\subset \mathbb {Z}<^>d$$\end{document}. When properly normalised the volume of the sausage converges to a quantity equivalent to the capacity of A with respect to the kernel k(x,y)=(1+& Vert;x-y & Vert;)2N-d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k(x,y)=(1+\Vert x-y\Vert )<^>{2N-d}$$\end{document}. As a consequence, we establish a new relation between capacity and branching capacity.