Rearranged Stochastic Heat Equation

成果类型:
Article
署名作者:
Delarue, Francois; Hammersley, William R. P.
署名单位:
Universite Cote d'Azur; Centre National de la Recherche Scientifique (CNRS)
刊物名称:
PROBABILITY THEORY AND RELATED FIELDS
ISSN/ISSBN:
0178-8051
DOI:
10.1007/s00440-024-01335-8
发表日期:
2025
页码:
41-102
关键词:
strong feller property smooth convex set reflection problem pathwise differentiability spdes DIFFUSIONS SPACE sdes derivatives REGULARITY
摘要:
The purpose of this work is to provide an explicit construction of a strong Feller semigroup on the space of probability measures over the real line that additionally maps bounded measurable functions into Lipschitz continuous functions, with a Lipschitz constant that blows up in an integrable manner in small time. Our construction relies on a rearranged version of the stochastic heat equation on the circle driven by a coloured noise. Formally, this stochastic equation writes as a reflected equation in infinite dimension. Under the action of the rearrangement, the solution is forced to live in a space of quantile functions that is isometric to the space of probability measures on the real line. We prove the equation to be solvable by means of an Euler scheme in which we alternate flat dynamics in the space of random variables on the circle with a rearrangement operation that projects back the random variables onto the subset of quantile functions. A first challenge is to prove that this scheme is tight. A second one is to provide a consistent theory for the limiting reflected equation and in particular to interpret in a relevant manner the reflection term. The last step in our work is to establish the aforementioned Lipschitz property of the semigroup by adapting earlier ideas from the Bismut-Elworthy-Li formula.