Poisson representable processes

成果类型:
Article; Early Access
署名作者:
Forsstrom, Malin P.; Gantert, Nina; Steif, Jeffrey E.
署名单位:
Chalmers University of Technology; University of Gothenburg
刊物名称:
PROBABILITY THEORY AND RELATED FIELDS
ISSN/ISSBN:
0178-8051
DOI:
10.1007/s00440-025-01391-8
发表日期:
2025
关键词:
ergodic properties
摘要:
Motivated by Alain-Sol Sznitman's interlacement process, we consider the set of {0,1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{0,1\}$$\end{document}-valued processes which can be constructed in an analogous way, namely as a union of sets coming from a Poisson process on a collection of sets. Our main focus is to determine which processes are representable in this way. Some of our results are as follows. (1) All positively associated Markov chains and a large class of renewal processes are so representable. (2) Whether an average of two product measures, with close densities, on n variables, is representable is related to the zeroes of the polylogarithm functions. (3) Using (2), we show that a number of tree-indexed Markov chains as well as the Ising model on Zd,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathbb {Z}<^>d ,$$\end{document} d >= 2,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ d\ge 2,$$\end{document} for certain parameters are not so representable. (4) The collection of permutation invariant processes that are representable corresponds exactly to the set of infinitely divisible random variables on [0,infinity]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[0,\infty ]$$\end{document} via a certain transformation. (5) The supercritical (low temperature) Curie-Weiss model is not representable for large n.