From ABC to KPZ

成果类型:
Article
署名作者:
Cannizzaro, G.; Goncalves, P.; Misturini, R.; Occelli, A.
署名单位:
University of Warwick; Universidade de Lisboa; Universidade Federal do Rio Grande do Sul; Universite d'Angers
刊物名称:
PROBABILITY THEORY AND RELATED FIELDS
ISSN/ISSBN:
0178-8051
DOI:
10.1007/s00440-024-01314-z
发表日期:
2025
页码:
361-420
关键词:
harmonic-oscillators phase-separation superdiffusion energy hydrodynamics diffusion particle noise MODEL
摘要:
We study the equilibrium fluctuations of an interacting particle system evolving on the discrete ring with N is an element of N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\in {\mathbb {N}}$$\end{document} points, denoted by TN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {T}}_N$$\end{document}, and with three species of particles that we name A, B and C, but such that at each site there is only one particle. We prove that proper choices of density fluctuation fields (that match those from nonlinear fluctuating hydrodynamics theory) associated to the (two) conserved quantities converge, in the limit N ->infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\rightarrow \infty $$\end{document}, to a system of stochastic partial differential equations, that can either be the Ornstein-Uhlenbeck equation or the Stochastic Burgers equation. To understand the cross interaction between the two conserved quantities, we derive a general version of the Riemann-Lebesgue lemma which is of independent interest.
来源URL: