The fuzzy Potts model in the plane: scaling limits and arm exponents

成果类型:
Article
署名作者:
Kohler-Schindler, Laurin; Lehmkuehler, Matthis
署名单位:
Swiss Federal Institutes of Technology Domain; ETH Zurich
刊物名称:
PROBABILITY THEORY AND RELATED FIELDS
ISSN/ISSBN:
0178-8051
DOI:
10.1007/s00440-024-01319-8
发表日期:
2025
页码:
287-359
关键词:
brownian intersection exponents RANDOM-CLUSTER MODEL conformal-invariance PHASE-TRANSITION critical percolation ising interfaces Divide VALUES point
摘要:
We consider a critical Fortuin-Kasteleyn (FK) percolation with cluster weight q is an element of[1,4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q \in [1,4)$$\end{document} in the plane, and color its clusters in red (respectively blue) with probability r is an element of(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r \in (0,1)$$\end{document} (respectively 1-r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1-r$$\end{document}), independently of each other. We study the resulting fuzzy Potts model, which corresponds to the critical Ising model in the special case q=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q=2$$\end{document} and r=1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r=1/2$$\end{document}. We show that under the assumption that the critical FK percolation converges to a conformally invariant scaling limit (which is known to hold for the FK-Ising model,i.e. q=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q=2$$\end{document}), the obtained coloring converges to variants of Conformal Loop Ensembles constructed, described and studied by Miller, Sheffield and Werner. Based on discrete considerations, we also show that the arm exponents for this coloring in the discrete model are identical to the ones of the continuum model. Using the values of these arm exponents in the continuum, we determine the arm exponents for the fuzzy Potts model.
来源URL: