Decorrelation transition in the Wigner minor process
成果类型:
Article; Early Access
署名作者:
Bao, Zhigang; Cipolloni, Giorgio; Erdos, Laszlo; Henheik, Joscha; Kolupaiev, Oleksii
署名单位:
University of Hong Kong; University of Arizona; Institute of Science & Technology - Austria
刊物名称:
PROBABILITY THEORY AND RELATED FIELDS
ISSN/ISSBN:
0178-8051
DOI:
10.1007/s00440-025-01422-4
发表日期:
2025
关键词:
mesoscopic eigenvalue statistics
central-limit-theorem
brownian-motion
edge
RIGIDITY
UNIVERSALITY
matrices
MODEL
beta
摘要:
We consider the Wigner minor process, i.e. the eigenvalues of an NxN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\times N$$\end{document} Wigner matrix H(N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H<^>{(N)}$$\end{document} together with the eigenvalues of all its nxn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\times n$$\end{document} minors, H(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H<^>{(n)}$$\end{document}, n <= N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\le N$$\end{document}. The top eigenvalues of H(N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H<^>{(N)}$$\end{document} and those of its immediate minor H(N-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H<^>{(N-1)}$$\end{document} are very strongly correlated, but this correlation becomes weaker for smaller minors H(N-k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H<^>{(N-k)}$$\end{document} as k increases. For the GUE minor process the critical transition regime around k similar to N2/3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\sim N<^>{2/3}$$\end{document} was analyzed by Forrester and Nagao (Forrester and Nagao, J. Stat. Mech. (08): P08011, 2011) providing an explicit formula for the nontrivial joint correlation function. We prove that this formula is universal, i.e. it holds for the Wigner minor process. Moreover, we give a complete analysis of the sub- and supercritical regimes both for eigenvalues and for the corresponding eigenvector overlaps, thus we prove the decorrelation transition in full generality.
来源URL: