Non-Hermitian spectral universality at critical points
成果类型:
Article; Early Access
署名作者:
Cipolloni, Giorgio; Erdos, Laszlo; Ji, Hong Chang
署名单位:
Institute of Science & Technology - Austria; University of Arizona; University of Wisconsin System; University of Wisconsin Madison
刊物名称:
PROBABILITY THEORY AND RELATED FIELDS
ISSN/ISSBN:
0178-8051
DOI:
10.1007/s00440-025-01384-7
发表日期:
2025
关键词:
random matrices universality
statistics
edge
摘要:
For general large non-Hermitian random matrices X and deterministic normal deformations A, we prove that the local eigenvalue statistics of A+X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A+X$$\end{document} close to the critical edge points of its spectrum are universal. This concludes the proof of the third and last remaining typical universality class for non-Hermitian random matrices (for normal deformations), after bulk and sharp edge universalities have been established in recent years.
来源URL: