An alternative approach for the mean-field behaviour of spread-out Bernoulli percolation in dimensions d > 6
成果类型:
Article; Early Access
署名作者:
Duminil-Copin, Hugo; Panis, Romain
署名单位:
Universite Paris Saclay; University of Geneva; Centre National de la Recherche Scientifique (CNRS); Ecole Centrale de Lyon; Institut National des Sciences Appliquees de Lyon - INSA Lyon; Universite Claude Bernard Lyon 1; Universite Jean Monnet
刊物名称:
PROBABILITY THEORY AND RELATED FIELDS
ISSN/ISSBN:
0178-8051
DOI:
10.1007/s00440-025-01416-2
发表日期:
2025
关键词:
self-avoiding walk
critical 2-point functions
critical exponents
PHASE-TRANSITION
lace expansion
lattice trees
models
inequalities
sharpness
decay
摘要:
This article proposes a new way of deriving mean-field exponents for sufficiently spread-out Bernoulli percolation in dimensions d > 6. We obtain up-to-constant estimates for the full-space and half-space two-point functions in the critical and near-critical regimes. In a companion paper, we apply a similar analysis to the study of the weakly self-avoiding walk model in dimensions d > 4 [Duminil-Copin and Panis, arXiv:2410.03649, (2024)].
来源URL: