Coupling between Brownian motion and random walks on the infinite percolation cluster
成果类型:
Article; Early Access
署名作者:
Gu, Chenlin; Su, Zhonggen; Xu, Ruizhe
署名单位:
Tsinghua University; Zhejiang University
刊物名称:
PROBABILITY THEORY AND RELATED FIELDS
ISSN/ISSBN:
0178-8051
DOI:
10.1007/s00440-025-01403-7
发表日期:
2025
关键词:
quenched invariance-principles
strong approximation theorems
random conductance model
Stochastic Homogenization
large deviations
quantitative homogenization
spectral gap
REGULARITY
CONVERGENCE
uniqueness
摘要:
For the supercritical Bernoulli bond percolation on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}<^>d$$\end{document} (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d \geqslant 2$$\end{document}), we give a coupling between the random walk on the infinite cluster and its limit Brownian motion, such that the maximum distance between the paths during [0, T] has a mean of order \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T<^>{\frac{1}{3}+o(1)}$$\end{document}. The construction of the coupling utilizes the optimal transport tool. The analysis mainly relies on local CLT and the concentration of the cluster density. This partially answers an open question posed by Biskup (Probab Surv 8:294-373, 2011). As a direct application, our result recovers the law of the iterated logarithm proved by Duminil-Copin (arXiv:0809.4380), and further identifies the limit constant.
来源URL: