Kawasaki dynamics beyond the uniqueness threshold

成果类型:
Article
署名作者:
Bauerschmidt, Roland; Bodineau, Thierry; Dagallier, Benoit
署名单位:
New York University; Centre National de la Recherche Scientifique (CNRS)
刊物名称:
PROBABILITY THEORY AND RELATED FIELDS
ISSN/ISSBN:
0178-8051
DOI:
10.1007/s00440-024-01326-9
发表日期:
2025
页码:
267-302
关键词:
logarithmic sobolev inequality glauber dynamics spectral gap ising-models trees PROOF
摘要:
Glauber dynamics of the Ising model on a random regular graph is known to mix fast below the tree uniqueness threshold and exponentially slowly above it. We show that Kawasaki dynamics of the canonical ferromagnetic Ising model on a random d-regular graph mixes fast beyond the tree uniqueness threshold when d is large enough (and conjecture that it mixes fast up to the tree reconstruction threshold for all d >= 3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\geqslant 3$$\end{document}). This result follows from a more general spectral condition for (modified) log-Sobolev inequalities for conservative dynamics of Ising models. The proof of this condition in fact extends to perturbations of distributions with log-concave generating polynomial.
来源URL: