Almost flat highest weights and application to Wilson loops on compact surfaces
成果类型:
Article; Early Access
署名作者:
Lemoine, Thibaut
署名单位:
Universite PSL; College de France
刊物名称:
PROBABILITY THEORY AND RELATED FIELDS
ISSN/ISSBN:
0178-8051
DOI:
10.1007/s00440-025-01388-3
发表日期:
2025
关键词:
weil-petersson volumes
heat kernel measure
yang-mills
MODULI SPACES
limit
EQUATIONS
geodesics
摘要:
We derive new formulas for the expectation and variance of Wilson loops for any contractible simple loop on a compact orientable surface of genus 1 and higher, in the model of two-dimensional Yang-Mills theory with structure group U(N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm U}(N)$$\end{document}. They are written in terms of a Gaussian measure on the dual of U(N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm U}(N)$$\end{document} introduced recently by the author and M. Ma & iuml;da [26]. From these formulas, we prove a quantitative result on the convergence of the expectation and variance as N tends to infinity, refining a result of [10]. We finally derive the large g limit of the Wilson loop expectation and variance, by analogy with the study of integrals on moduli spaces of compact hyperbolic surfaces. Surprisingly, the variance does not vanish in this regime, but there are no nontrivial fluctuations of any order.
来源URL: