Optimal convergence rates in stochastic homogenization in a balanced random environment
成果类型:
Article; Early Access
署名作者:
Guo, Xiaoqin; Tran, Hung V.
署名单位:
University System of Ohio; University of Cincinnati; University of Wisconsin System; University of Wisconsin Madison
刊物名称:
PROBABILITY THEORY AND RELATED FIELDS
ISSN/ISSBN:
0178-8051
DOI:
10.1007/s00440-025-01409-1
发表日期:
2025
关键词:
quenched invariance-principle
central-limit-theorem
elliptic-equations
nondivergence-form
random-walk
parabolic equations
compactness methods
inequalities
bounds
摘要:
We consider random walks in a uniformly elliptic, balanced, i.i.d. random environment in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}<^>d$$\end{document} for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\ge 2$$\end{document}. We first derive a quantitative law of large numbers for the invariant measure, which is nearly optimal. A mixing property of the field of the invariant measure is then achieved. We next obtain rates of convergence for the homogenization of the Dirichlet problem for non-divergence form difference operators, which are generically optimal for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\ge 3$$\end{document} and nearly optimal when \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=2$$\end{document}. Furthermore, we establish the existence, stationarity, and uniqueness properties of the corrector problem for all dimensions \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\ge 2$$\end{document}. Afterward, we quantify the ergodicity of the environmental process for both the continuous-time and discrete-time random walks. Consequently, we get explicit convergence rates for the quenched central limit theorem of the balanced random walk.
来源URL: