Gaussian curvature on random planar maps and Liouville quantum gravity
成果类型:
Article; Early Access
署名作者:
Hip, Andres A. Contreras; Gwynne, Ewain
署名单位:
University of Chicago
刊物名称:
PROBABILITY THEORY AND RELATED FIELDS
ISSN/ISSBN:
0178-8051
DOI:
10.1007/s00440-025-01430-4
发表日期:
2025
关键词:
multiplicative chaos
brownian map
kpz relation
triangulations
geodesics
sle
摘要:
We investigate the notion of curvature in the context of Liouville quantum gravity (LQG) surfaces. We define the Gaussian curvature for LQG, which we conjecture is the scaling limit of discrete curvature on random planar maps. Motivated by this, we study asymptotics for the discrete curvature of & varepsilon;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document}-mated CRT maps. More precisely, we prove that the discrete curvature integrated against a Cc2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_c<^>2$$\end{document} test function is of order & varepsilon;o(1),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon <^>{o(1)},$$\end{document} which is consistent with our scaling limit conjecture. On the other hand, we prove the total discrete curvature on a fixed space-filling SLE segment scaled by & varepsilon;14\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon <^>{\frac{1}{4}}$$\end{document} converges in distribution to an explicit random variable.
来源URL: