Vanishing self-diffusivity in Ginibre interacting Brownian motions in two dimensions
成果类型:
Article
署名作者:
Osada, Hirofumi
署名单位:
Chubu University
刊物名称:
PROBABILITY THEORY AND RELATED FIELDS
ISSN/ISSBN:
0178-8051
DOI:
10.1007/s00440-024-01303-2
发表日期:
2025
页码:
1325-1372
关键词:
determinantal point-processes
reversible markov-processes
central-limit-theorem
invariance-principle
particles
DYNAMICS
RIGIDITY
摘要:
We prove that the tagged particles of infinitely many Brownian particles in R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathbb {R}} <^>2$$\end{document} interacting via a logarithmic (two-dimensional Coulomb) potential with inverse temperature beta=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \beta = 2 $$\end{document} are sub-diffusive. The associated unlabeled diffusion is reversible with respect to the Ginibre random point field, and the dynamics are thus referred to as the Ginibre interacting Brownian motion. If the interacting Brownian particles have interaction potential Psi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \Psi $$\end{document} of Ruelle class and the total system starts in a translation invariant equilibrium state, then the tagged particles are always diffusive if the dimension d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ d$$\end{document} of the space Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathbb {R}}<^>{d} $$\end{document} is greater than or equal to two. That is, the tagged particles are always non-degenerate under diffusive scaling. Our result is, therefore, contrary to known results. The Ginibre random point field has various levels of geometric rigidity. Our results reveal that the geometric property of infinite particle systems affects the dynamical property of the associated stochastic dynamics.
来源URL: