LP ESTIMATES ON ITERATED STOCHASTIC INTEGRALS
成果类型:
Article
署名作者:
CARLEN, E; KREE, P
署名单位:
Sorbonne Universite
刊物名称:
ANNALS OF PROBABILITY
ISSN/ISSBN:
0091-1798
DOI:
10.1214/aop/1176990549
发表日期:
1991
页码:
354-368
关键词:
摘要:
For a continuous martingale M, let denote the increasing process. Let I0, I1,... denote the iterated stochastic integrals of M. We prove the inequalities of Burkholder-Davis-Gundy type, [GRAPHICS] where ln A(p,n) approximately ln B(p,n) approximately -(n/2)ln n as n --> infinity. Our proof requires the sharp constant b(p) in Burkholder-Davis-Gundy inequalities parallel-to M parallel-to p less-than-or-equal-to b(p) parallel-to 1/2 parallel-to p. In the Appendix we prove sup(p) greater-than-or-equal-to 1(b(p)/ square-root p) = 2. We apply our inequality to the study of the L(p) convergence of the Neuman series SIGMA-I(n)(t) for exponential martingales.