LOCALIZATION AND SELECTION IN A MEAN FIELD BRANCHING RANDOM-WALK IN A RANDOM ENVIRONMENT

成果类型:
Article
署名作者:
FLEISCHMANN, K; GREVEN, A
署名单位:
University of Gottingen
刊物名称:
ANNALS OF PROBABILITY
ISSN/ISSBN:
0091-1798
DOI:
10.1214/aop/1176989543
发表日期:
1992
页码:
2141-2163
关键词:
model
摘要:
We consider a continuous time branching random walk on the finite set {1, 2,..., N} with totally symmetric diffusion jumps and some site-dependent i.i.d. random birth rates which are unbounded. We study this process as the time t and the space size N tend to infinity simultaneously. In the classical law of large numbers setup for spatial branching models, the growth of the population obeys an exponential limit law due to the localization of the overwhelming portion of particles in the record point of the medium. This phenomenon is analyzed further: The historical path (in space) of a typical particle picked at time t (selection) is of a rather simple and special nature and becomes in the limit singular (in distribution) to the path of the underlying mean field random walk. In general, the properties of the typical path depend on the relation in which t and N tend to infinity.