On the density of the maximum of smooth Gaussian processes

成果类型:
Article
署名作者:
Diebolt, J; Posse, C
署名单位:
Swiss Federal Institutes of Technology Domain; ETH Zurich
刊物名称:
ANNALS OF PROBABILITY
ISSN/ISSBN:
0091-1798
发表日期:
1996
页码:
1104-1129
关键词:
variance supremum time tail
摘要:
We obtain an integral formula for the density of the maximum of smooth Gaussian processes. This expression induces explicit nonasymptotic lower and upper bounds which are in general asymptotic to the density. Moreover, these bounds allow us to derive simple asymptotic formulas for the density with rate of approximation as well as accurate asymptotic bounds. In particular, in the case of stationary processes, the latter upper bound improves the well-known bound based on Rice's formula. In the case of processes with variance admitting a finite number of maxima, we refine recent results obtained by Konstant and Piterbarg in a broader context, producing the rate of approximation for suitable variants of their asymptotic formulas. Our constructive approach relies on a geometric representation of Gaussian processes involving a unit speed parameterized curve embedded in the unit sphere.