Crossings and occupation measures for a class of semimartingales
成果类型:
Article
署名作者:
Perera, G; Wschebor, M
署名单位:
Universite Paris Saclay; Universidad de la Republica, Uruguay
刊物名称:
ANNALS OF PROBABILITY
ISSN/ISSBN:
0091-1798
发表日期:
1998
页码:
253-266
关键词:
local time
wiener
摘要:
We show that 1/root epsilon {integral(-infinity)(infinity) f(u)k(epsilon)N(tau)(X epsilon)(u) du - integral(0)(tau) f(X-t)a(t)dt} converges in law (as a continuous process) to c(psi) f(0)(tau) f(X-t)a(t) dB(t), where X-t = integral(0)(t) a(s) dW(s) + integral(0)(t) b(s) ds, with W a standard Brownian motion, a. and b regular and adapted processes, X-epsilon(t) = integral(-infinity)(infinity)(1/epsilon)psi((t - u)/epsilon)X-u du, psi a smooth kernel, N-t(g)(u) the number of roots of the equation g(s) = u, s is an element of (0, t], k(epsilon) = root pi epsilon\2\parallel to(2), f a smooth function, B a standard Brownian motion independent of W and c(psi) a constant depending only on psi.