The second lowest extremal invariant measure of the contact process II
成果类型:
Article
署名作者:
Salzano, M; Schonmann, RH
署名单位:
University of California System; University of California Los Angeles
刊物名称:
ANNALS OF PROBABILITY
ISSN/ISSBN:
0091-1798
DOI:
10.1214/aop/1022677388
发表日期:
1999
页码:
845-875
关键词:
branching random-walks
homogeneous trees
complete convergence
intermediate phase
TRANSITION
BEHAVIOR
points
set
摘要:
We continue the investigation of the behavior of the contact process on infinite connected graphs of bounded degree. Some questions left open by Salzano and Schonmann (1997) concerning the notions of complete convergence, partial convergence and the criterion r = s are answered. The continuity properties of the survival probability and the recurrence probability are studied. These order parameters are found to have a richer behavior than expected, with the possibility of the survival probability being discontinuous at or above the threshold for survival. A condition which guarantees the continuity of the survival probability above the survival point is introduced and exploited. The recurrence probability is shown to always be left-continuous above the recurrence point, and a necessary and sufficient condition for its right-continuity is introduced and exploited. It is shown that for homogeneous graphs the survival probability can only be discontinuous at the survival point, and the recurrence probability can only be discontinuous at the recurrence point. For graphs which are obtained by joining a finite number of severed homogeneous trees by means of a finite number of vertices and edges, the survival point, the recurrence point and the discontinuity points of the survival and recurrence probabilities are located.
来源URL: