Finite-dimensional approximation of the self-diffusion coefficient for the exclusion process
成果类型:
Article
署名作者:
Landim, C; Olla, S; Varadhan, SRS
署名单位:
Universite de Rouen Normandie; Centre National de la Recherche Scientifique (CNRS); CY Cergy Paris Universite; Institut Polytechnique de Paris; Ecole Polytechnique; ENSTA Paris; New York University
刊物名称:
ANNALS OF PROBABILITY
ISSN/ISSBN:
0091-1798
发表日期:
2002
页码:
483-508
关键词:
invariance-principle
MARKOV-PROCESSES
tagged particle
摘要:
We show that for the symmetric simple exclusion process on Z(d) the self-diffusion coefficient of a tagged particle is stable when approximated by simple exclusion processes on large periodic lattices. The proof depends on a similar stability property of the asymptotic variance of additive functionals of mean 0. This requires establishing a property for the Dirichlet space known as the Liouville-D property.