Convergence to equilibrium of conservative particle systems on Zd

成果类型:
Article
署名作者:
Landim, C; Yau, HT
署名单位:
Universite de Rouen Normandie; Centre National de la Recherche Scientifique (CNRS); CNRS - National Institute for Mathematical Sciences (INSMI); New York University
刊物名称:
ANNALS OF PROBABILITY
ISSN/ISSBN:
0091-1798
发表日期:
2003
页码:
115-147
关键词:
logarithmic sobolev inequality spectral gap DYNAMICS kawasaki
摘要:
We consider the Ginzburg-Landau process on the lattice Z(d) whose potential is a bounded perturbation of the Gaussian potential. We prove that the decay rate to equilibrium in the variance sense is t(-d/2) up to a logarithmic correction, for any function a with finite triple norm; that is, \\\u\\\ = Sigma(xis an element ofzd) \\partial derivative(etax)u\\(infinity) < infinity.