Moderate deviations and law of the iterated logarithm for intersections of the ranges of random walks

成果类型:
Article
署名作者:
Xia, C
署名单位:
University of Tennessee System; University of Tennessee Knoxville
刊物名称:
ANNALS OF PROBABILITY
ISSN/ISSBN:
0091-1798
DOI:
10.1214/009117905000000035
发表日期:
2005
页码:
1014-1059
关键词:
aleatory walks local-times sobolev
摘要:
Let S-1 (n), . . ., S-p(n) be independent symmetric random walks in Z(d). We establish moderate deviations and law of the iterated logarithm for the intersection of the ranges #{S-1[0, n] boolean AND . . . boolean AND S-p[0, n]} in the case d = 2, p >= 2 and the case d = 3, p = 2.