Ends in free minimal spanning forests

成果类型:
Article
署名作者:
Timar, Adam
署名单位:
Indiana University System; Indiana University Bloomington
刊物名称:
ANNALS OF PROBABILITY
ISSN/ISSBN:
0091-1798
DOI:
10.1214/009117906000000025
发表日期:
2006
页码:
865-878
关键词:
reinforced random-walk galton-watson percolation
摘要:
We show that for a transitive unimodular graph, the number of ends is the same for every tree of the free minimal spanning forest. This answers a question of Lyons, Peres and Schramm.