Euler hydrodynamics of one-dimensional attractive particle systems

成果类型:
Article
署名作者:
Bahadoran, C.; Guiol, H.; Ravishankar, K.; Saada, E.
署名单位:
Universite Clermont Auvergne (UCA); State University of New York (SUNY) System; University at Albany, SUNY; SUNY New Paltz; Communaute Universite Grenoble Alpes; Institut National Polytechnique de Grenoble; Universite Grenoble Alpes (UGA); Universite de Rouen Normandie; Centre National de la Recherche Scientifique (CNRS); CNRS - National Institute for Mathematical Sciences (INSMI)
刊物名称:
ANNALS OF PROBABILITY
ISSN/ISSBN:
0091-1798
DOI:
10.1214/009117906000000115
发表日期:
2006
页码:
1339-1369
关键词:
hyperbolic systems exclusion process CONSERVATION EQUATIONS limit
摘要:
We consider attractive irreducible conservative particle systems on Z, without necessarily nearest-neighbor jumps or explicit invariant measures. We prove that for such systems, the hydrodynamic limit under Enter time scaling exists and is given by the entropy solution to some scalar conservation law with Lipschitz-continuous flux. Our approach is a generalization of Bahadoran et al. [Stochastic Process. Appl. 99 (2002) 1-30], from which we relax the assumption that the process has explicit invariant measures.