Beta-coalescents and continuous stable random trees
成果类型:
Article
署名作者:
Berestycki, Julien; Berestycki, Nathanaeel; Schweinsberg, Jason
署名单位:
Aix-Marseille Universite; University of California System; University of California San Diego; University of British Columbia
刊物名称:
ANNALS OF PROBABILITY
ISSN/ISSBN:
0091-1798
DOI:
10.1214/009117906000001114
发表日期:
2007
页码:
1835-1887
关键词:
POPULATION
number
genealogy
limit
摘要:
Coalescents with multiple collisions, also known as Lambda-coalescents, were introduced by Pitman and Sagitov in 1999. These processes describe the evolution of particles that undergo stochastic coagulation in such a way that several blocks can merge at the same time to form a single block. In the case that the measure A is the Beta(2-alpha, alpha) distribution, they are also known to describe the genealogies of large populations where a single individual can produce a large number of offspring. Here, we use a recent result of Birkner et al. to prove that Beta-coalescents can be embedded in continuous stable random trees, about which much is known due to the recent progress of Duquesne and Le Gall. Our proof is based on a construction of the Donnelly-Kurtz lookdown process using continuous random trees, which is of independent interest. This produces a number of results concerning the small-time behavior of Beta-coalescents. Most notably, we recover an almost sure limit theorem of the present authors for the number of blocks at small times and give the multifractal spectrum corresponding to the emergence of blocks with atypical size. Also, we are able to find exact asymptotics for sampling formulae corresponding to the site frequency spectrum and the allele frequency spectrum associated with mutations in the context of population genetics.