Borel theorems for random matrices from the classical compact symmetric spaces

成果类型:
Article
署名作者:
Collins, Benoit; Stolz, Michael
署名单位:
Centre National de la Recherche Scientifique (CNRS); CNRS - National Institute for Mathematical Sciences (INSMI); Ecole Centrale de Lyon; Institut National des Sciences Appliquees de Lyon - INSA Lyon; Universite Claude Bernard Lyon 1; Universite Jean Monnet; University of Ottawa; Ruhr University Bochum
刊物名称:
ANNALS OF PROBABILITY
ISSN/ISSBN:
0091-1798
DOI:
10.1214/07-AOP341
发表日期:
2008
页码:
876-895
关键词:
eigenvalues ensembles
摘要:
We study random vectors of the form (Tr(A((1))V),...,Tr(A((r))V)), where V is a uniformly distributed element of a matrix version of a classical compact symmetric space, and the AM are deterministic parameter matrices. We show that for increasing matrix sizes these random vectors converge to a joint Gaussian limit, and compute its covariances. This generalizes previous work of Diaconis et al. for Haar distributed matrices from the classical compact groups. The proof uses integration formulas, due to Collins and Sniady, for polynomial functions on the classical compact groups.