MINIMA IN BRANCHING RANDOM WALKS
成果类型:
Article
署名作者:
Addario-Berry, Louigi; Reed, Bruce
署名单位:
Universite de Montreal; McGill University; Inria; Universite Cote d'Azur
刊物名称:
ANNALS OF PROBABILITY
ISSN/ISSBN:
0091-1798
DOI:
10.1214/08-AOP428
发表日期:
2009
页码:
1044-1079
关键词:
weighted height
displacement
deviations
position
摘要:
Given a branching random walk, let M-n be the minimum position of any member of the nth generation. We calculate EMn to within O(1) and prove exponential tail bounds for P{vertical bar M-n - EMn vertical bar > x}, under quite general conditions on the branching random walk. In particular, together with work by Bramson [Z. Wahrsch. Verw. Gebiete 45 (1978) 89-108], our results fully characterize the possible behavior of EMn when the branching random walk has bounded branching and step size.