NONCENTRAL CONVERGENCE OF MULTIPLE INTEGRALS
成果类型:
Article
署名作者:
Nourdin, Ivan; Peccati, Giovanni
署名单位:
Universite Paris Cite; Sorbonne Universite; Universite Paris Nanterre; Sorbonne Universite
刊物名称:
ANNALS OF PROBABILITY
ISSN/ISSBN:
0091-1798
DOI:
10.1214/08-AOP435
发表日期:
2009
页码:
1412-1426
关键词:
CENTRAL LIMIT-THEOREMS
nonlinear functionals
摘要:
Fix nu > 0, denote by G(nu/2) a Gamma random variable with parameter nu/2 and let n >= 2 be a fixed even integer. Consider a sequence {F-k}(k >= 1) of square integrable random variables belonging to the nth Wiener chaos of a given Gaussian process and with valiance converging to 2 nu. As k -> infinity, we prove that F-k converges in distribution to 2G(nu/2) - nu if and only if E(F-k(4)) - 12E(F-k(3)) -> 12 nu(2) - 48 nu.