ASYMPTOTIC BEHAVIOR OF WEIGHTED QUADRATIC VARIATIONS OF FRACTIONAL BROWNIAN MOTION: THE CRITICAL CASE H=1/4

成果类型:
Article
署名作者:
Nourdin, Ivan; Reveillac, Anthony
署名单位:
Sorbonne Universite; Universite Paris Cite; Humboldt University of Berlin
刊物名称:
ANNALS OF PROBABILITY
ISSN/ISSBN:
0091-1798
DOI:
10.1214/09-AOP473
发表日期:
2009
页码:
2200-2230
关键词:
CENTRAL LIMIT-THEOREMS gaussian fields itos formula hurst index sdes driven CONVERGENCE functionals
摘要:
We derive the asymptotic behavior of weighted quadratic variations of fractional Brownian motion B with Hurst index H = 1/4. This completes the only missing case in a very recent work by I. Nourdin, D. Nualart and C. A. Tudor. Moreover, as an application, we solve a recent conjecture of K. Burdzy and J. Swanson on the asymptotic behavior of the Riemann sums with alternating signs associated to B.