VARIATIONS AND ESTIMATORS FOR SELF-SIMILARITY PARAMETERS VIA MALLIAVIN CALCULUS
成果类型:
Article
署名作者:
Tudor, Ciprian A.; Viens, Frederi G.
署名单位:
heSam Universite; Universite Pantheon-Sorbonne; Purdue University System; Purdue University; Purdue University System; Purdue University
刊物名称:
ANNALS OF PROBABILITY
ISSN/ISSBN:
0091-1798
DOI:
10.1214/09-AOP459
发表日期:
2009
页码:
2093-2134
关键词:
CENTRAL LIMIT-THEOREMS
power variations
CONVERGENCE
functionals
摘要:
Using multiple stochastic integrals and the Malliavin calculus, we analyze the asymptotic behavior of quadratic variations for a specific non-Gaussian self-similar process, the Rosenblatt process. We apply our results to the design of strongly consistent statistical estimators for the self-similarity parameter H. Although, in the case of the Rosenblatt process, our estimator has non-Gaussian asymptotics for all H > 1/2, we show the remarkable fact that the process's data at time 1 can be used to construct a distinct, compensated estimator with Gaussian asymptotics for H is an element of (1/2, 2/3).
来源URL: