A PURE JUMP MARKOV PROCESS WITH A RANDOM SINGULARITY SPECTRUM
成果类型:
Article
署名作者:
Barral, Julien; Fournier, Nicolas; Jaffard, Stephane; Seuret, Stephane
署名单位:
Universite Paris 13; Centre National de la Recherche Scientifique (CNRS); CNRS - National Institute for Mathematical Sciences (INSMI); Universite Paris-Est-Creteil-Val-de-Marne (UPEC)
刊物名称:
ANNALS OF PROBABILITY
ISSN/ISSBN:
0091-1798
DOI:
10.1214/10-AOP533
发表日期:
2010
页码:
1924-1946
关键词:
multifractal nature
Hausdorff Dimension
wavelet series
Levy processes
摘要:
We construct a nondecreasing pure jump Markov process, whose jump measure heavily depends on the values taken by the process. We determine the singularity spectrum of this process, which turns out to be random and to depend locally on the values taken by the process. The result relies on fine properties of the distribution of Poisson point processes and on ubiquity theorems.