CURVATURE, CONCENTRATION AND ERROR ESTIMATES FOR MARKOV CHAIN MONTE CARLO

成果类型:
Article
署名作者:
Joulin, Alderic; Ollivier, Yann
署名单位:
Universite de Toulouse; Universite Toulouse III - Paul Sabatier; Universite Federale Toulouse Midi-Pyrenees (ComUE); Institut National des Sciences Appliquees de Toulouse; Ecole Normale Superieure de Lyon (ENS de LYON)
刊物名称:
ANNALS OF PROBABILITY
ISSN/ISSBN:
0091-1798
DOI:
10.1214/10-AOP541
发表日期:
2010
页码:
2418-2442
关键词:
information inequalities deviation inequality CONVERGENCE
摘要:
We provide explicit nonasymptotic estimates for the rate of convergence of empirical means of Markov chains, together with a Gaussian or exponential control on the deviations of empirical means. These estimates hold under a positive curvature assumption expressing a kind of metric ergodicity, which generalizes the Ricci curvature from differential geometry and, on finite graphs, amounts to contraction under path coupling.