THE Λ-COALESCENT SPEED OF COMING DOWN FROM INFINITY
成果类型:
Article
署名作者:
Berestycki, Julien; Berestycki, Nathanael; Limic, Vlada
署名单位:
Universite Paris Cite; Sorbonne Universite; Centre National de la Recherche Scientifique (CNRS); CNRS - National Institute for Mathematical Sciences (INSMI); University of Cambridge; Centre National de la Recherche Scientifique (CNRS); Aix-Marseille Universite
刊物名称:
ANNALS OF PROBABILITY
ISSN/ISSBN:
0091-1798
DOI:
10.1214/09-AOP475
发表日期:
2010
页码:
207-233
关键词:
INEQUALITIES
摘要:
Consider a Lambda-coalescent that comes down from infinity (meaning that it starts from a configuration containing infinitely many blocks at time 0, yet it has a finite number N-t of blocks at any positive time t > 0). We exhibit a deterministic function v: (0, infinity) -> (0, infinity) such that N-t/v(t) -> 1, almost surely, and in L-p for any p >= 1, as t -> 0. Our approach relies on a novel martingale technique.