LARGE DEVIATIONS FOR INTERSECTION LOCAL TIMES IN CRITICAL DIMENSION
成果类型:
Article
署名作者:
Castell, Fabienne
署名单位:
Centre National de la Recherche Scientifique (CNRS); Aix-Marseille Universite
刊物名称:
ANNALS OF PROBABILITY
ISSN/ISSBN:
0091-1798
DOI:
10.1214/09-AOP499
发表日期:
2010
页码:
927-953
关键词:
shear-flow drift
central limit-theorem
iterated logarithm
random-walks
Moderate Deviations
polymer-chains
INVARIANCE-PRINCIPLES
aleatory walks
random scenery
edwards model
摘要:
Let (X(t), t >= 0) be a continuous time simple random walk on Z(d) (d >= 3), and let I(T)(x) be the time spent by (X(t), t >= 0) on the site x up to time T. We prove a large deviations principle for the q-fold self-intersection local time I(T) = Sigma(x is an element of Zd) I(T)(x)(q) in the critical case q = d/d-2. When q is integer, we obtain similar results for the intersection local times of q independent simple random walks.
来源URL: